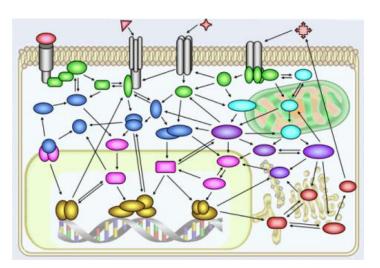


A Bayesian network integration framework for modeling biomedical data



Olivier Gevaert

PhD defense

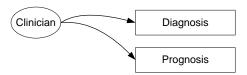
Olivier Gevaert

Overview

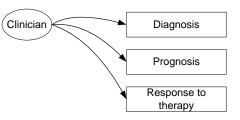
- Motivation
- Bayesian networks
- Results
 - Aim 1: modeling primary data
 - Aim 2: integrating primary data
 - Aim 3: integrating secondary data
- Conclusions
- Future work

- Clinicians have to make many decisions concerning the therapy of their patients e.g.:
 - Diagnosis

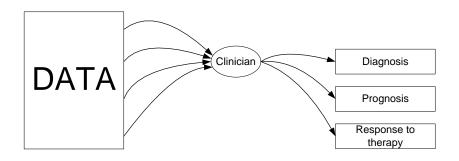
- Clinicians have to make many decisions concerning the therapy of their patients e.g.:
 - Diagnosis
 - Prognosis



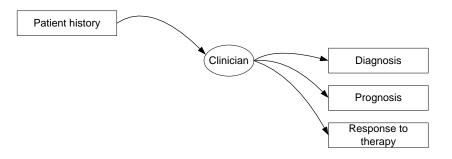
- Clinicians have to make many decisions concerning the therapy of their patients e.g.:
 - Diagnosis
 - Prognosis
 - Therapy response
- Based on **expertise**
- But often the clinician has



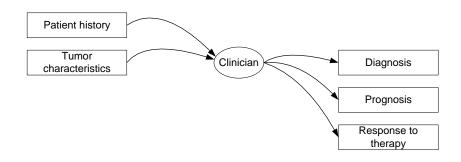
- Clinicians have to make many decisions concerning the therapy of their patients e.g.:
 - Diagnosis
 - Prognosis
 - Therapy response
- Based on **expertise**
- But often the clinician has
 - Patient Data



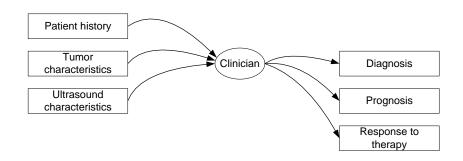
- Clinicians have to make many decisions concerning the therapy of their patients e.g.:
 - Diagnosis
 - Prognosis
 - Therapy response
- Based on expertise
- But often the clinician has
 - Patient Data
 - Patient history



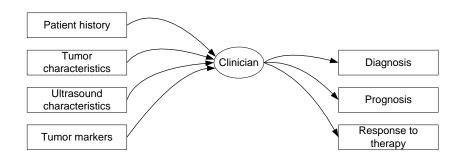
- Clinicians have to make many decisions concerning the therapy of their patients e.g.:
 - Diagnosis
 - Prognosis
 - Therapy response
- Based on **expertise**
- But often the clinician has
 - Patient Data
 - Patient history
 - Tumor characteristics



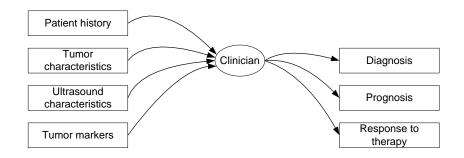
- Clinicians have to make many decisions concerning the therapy of their patients e.g.:
 - Diagnosis
 - Prognosis
 - Therapy response
- Based on expertise
- But often the clinician has
 - Patient Data
 - Patient history
 - Tumor characteristics
 - Ultrasound characteristics •



- Clinicians have to make many decisions concerning the therapy of their patients e.g.:
 - Diagnosis
 - Prognosis
 - Therapy response
- Based on **expertise**
- But often the clinician has
 - Patient Data
 - Patient history
 - Tumor characteristics
 - Ultrasound characteristics
 - Tumor markers



- Not all these data types are relevant for every disease
- But for example for the diagnosis of ovarian masses <u>many data types</u> are suspected to be relevant
- And for many other diseases this is also the case



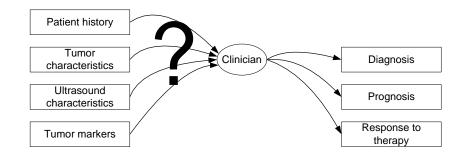
BIOInformatics

- Not all these data types are relevant for every disease
- But for example for the diagnosis of ovarian masses <u>many data types</u> are suspected to be relevant
- And for many other diseases this is also the case
- Problem

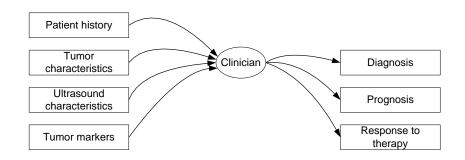
BIOInformatics

 In many cases it is difficult for the clinician to interpret <u>all data</u> manually

Olivier Gevaert

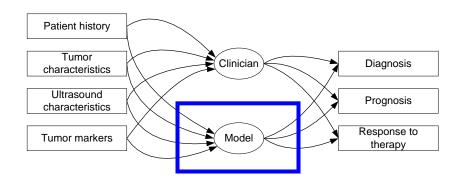


• Solution:



Olivier Gevaert

- Solution:
 - Medical decision support modeling
 - Building a mathematical model on the data
 - Use this model to predict patient outcome
 - Diagnosis
 - Prognosis
 - Therapy response

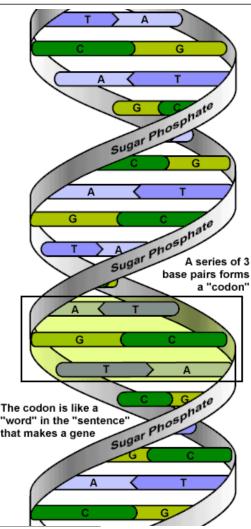




Medical decision support modeling

- History of more than 30 years
- Many different methods exist
 - Logistic regression
 - Artificial Neural networks
 - Support vector machines
 - Bayesian networks
 - ...
- The general idea is the same
 - Assist clinicians when making decisions

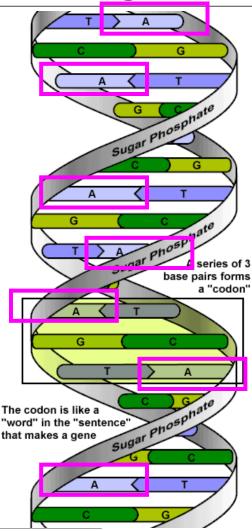
- The rise of new technology
 changed medical decision support
 into biomedical decision support
- New technologies allow to gather biological data
- When studying **cancer**, this has particular advantages
 - Biological
 - Individualized
 - Genome-scale



BIOInformatics

Molecular biology

- Short introduction in molecular biology
 - DNA consists of 4 bases
 - Adenine \Rightarrow A
 - Guanine \Rightarrow G
 - Cytosine \Rightarrow C
 - Thymine \Rightarrow T
 - Human DNA consists of a sequence of two times 3 billion of these bases



- DNA stores the genetic information in the form of genes
- Gene is a small piece of DNA
- Central dogma of molecular biology
 - Transcription
 - Gene \Rightarrow mRNA
 - Translation
 - mRNA \Rightarrow protein

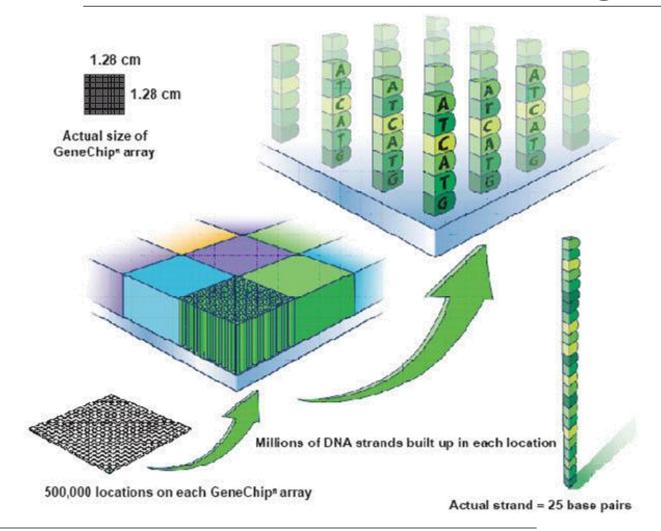
TRANSC	RIPTION

BIOInformatics

The human genome project

- In 2001 the first draft sequence of the human genome was published
 - DNA sequence of 3 billion A,C,T and G unraveled
- This resulted in a more consistent map of all the genes in the human genome (~25000)
- Concurrently a technology to measure the mRNA activity of all genes was developed: **microarray technology**
 - Chip
 - Probes representing all 25000 genes
 - Measure mRNA activity of all genes in the genome

Microarray technology



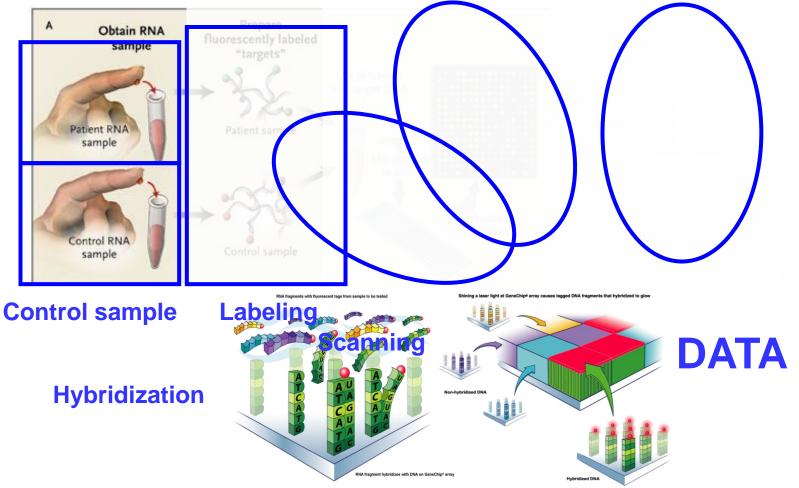
BIOInformatics

Olivier Gevaert

S BIOInformatics

Microarray technology

Tumor sample

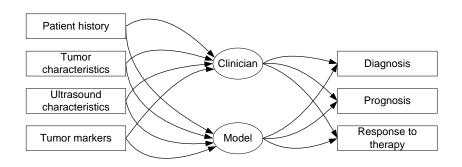


LEUVERSITEIT

Olivier Gevaert

Microarray data

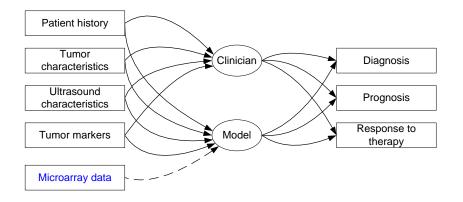
- Microarray technology produces huge quantities of data
 - ~ 25000 values per patient
- This data can also be used for decision support
- Virtually impossible for a clinician to interpret the data directly



Microarray data

- Microarray technology produces huge quantities of data
 - ~ 25000 values per patient
- This data can also be used for decision support
- Virtually impossible for a clinician to interpret the data directly

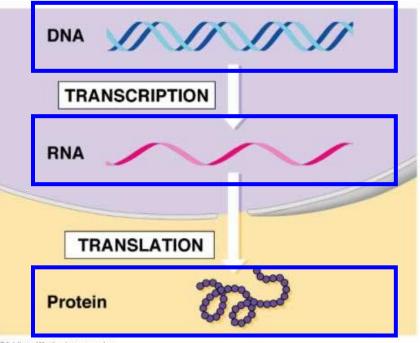
• Biomedical decision support modeling is the only option



S BIOInformatics

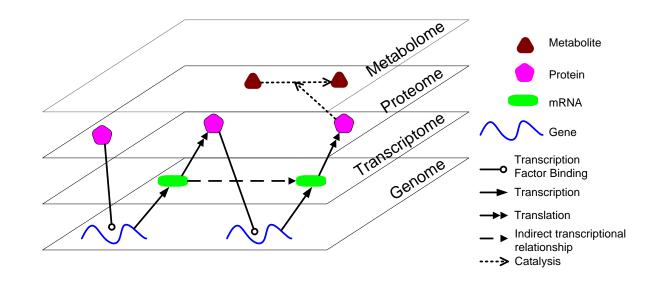
Omics

- Microarray technology only measures mRNA or the transcriptome
- Other levels of molecular biology exist such as
 - Genome
 - Proteome
- These levels are often called **omics**

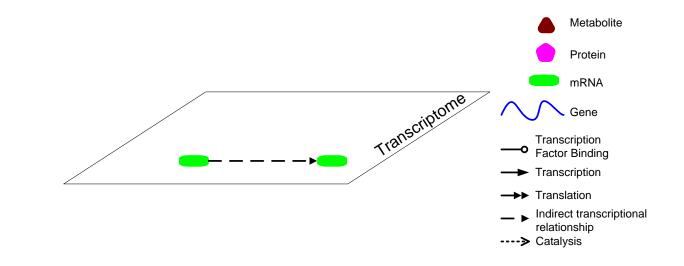


©Addison Wesley Longman, Inc.

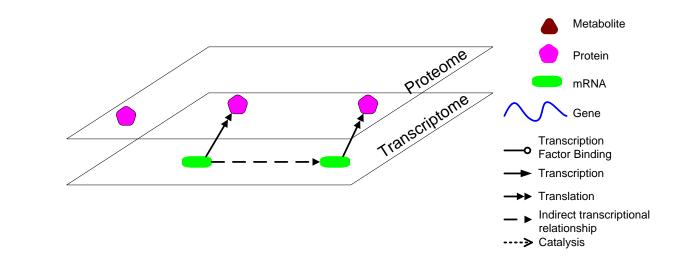
- Microarray technology is not the only "omics" technology
- Other technologies have emerged that profile different levels of molecular biology



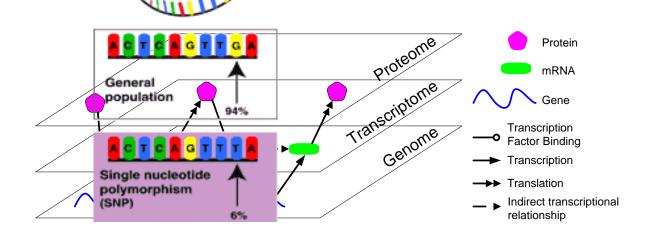
- Microarray technology only studies the transcriptome
- Only **indirect** relationships can be found



• Mass spectrometry based proteomics allows to target the proteome

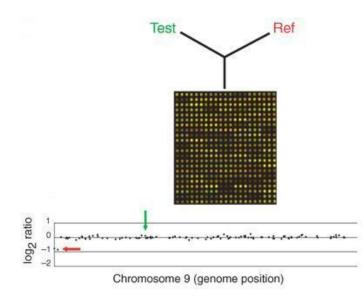


- Also the genome is more variable than previously thought
 - Single base differences between individuals (SNPs)
 - Copy number variations Polymorphism
 - Large pieces of genome sequence with more or less copies

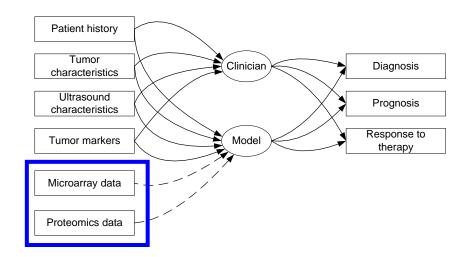


ArrayCGH

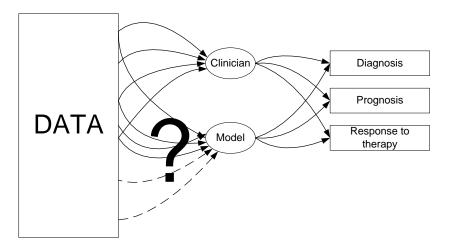
- Also the genome is more variable than previously thought
 - Single base differences between individuals (SNPs)
 - Copy number variations
 - Large pieces of genome sequence with more or less copies
 - Array Comparative Genomic Hybridization (arrayCGH)



- All these omics technologies have in common that they provide data at a genome scale level:
 - Many variables per patient
 - Not possible to interpret the data manually

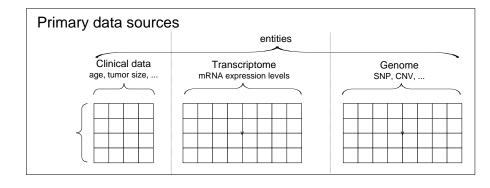


- All these omics technologies have in common that they provide data at a genome scale level
 - Many variables per patient
 - Not possible to interpret the data manually
- Methods needed to model all these data

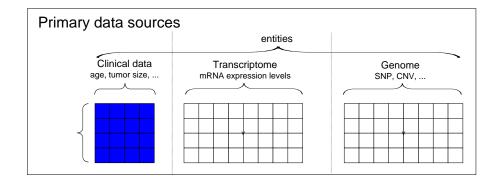


- Our aim is to investigate if integrating these heterogeneous and high-dimensional data using Bayesian networks improves predictive performance
- To support the clinician in making decisions related to the clinical management of diseases:
 - Diagnosis
 - Prognosis
 - Therapy response
- We have defined two types of data

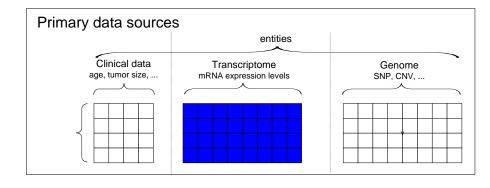
• Primary data is patient specific



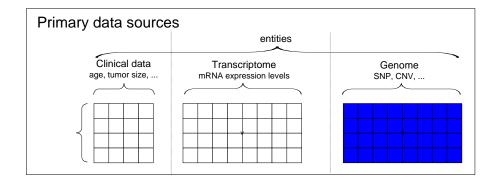
• Primary data is patient specific



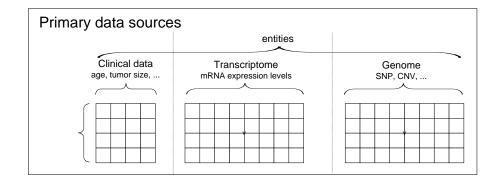
• Primary data is patient specific



• Primary data is patient specific

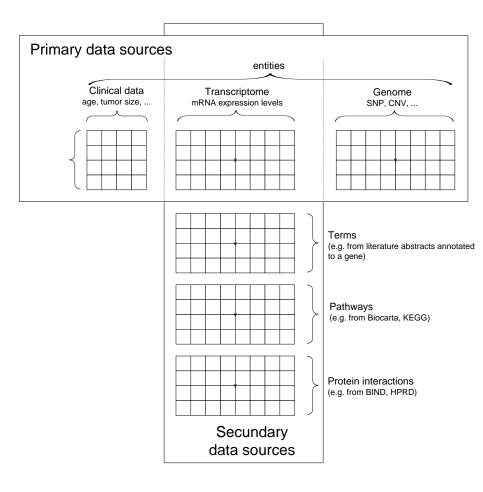


- Primary data is patient specific
- Secondary data is entity specific
 - Gene in genome
 - mRNA in transcriptome
 - Protein in proteome

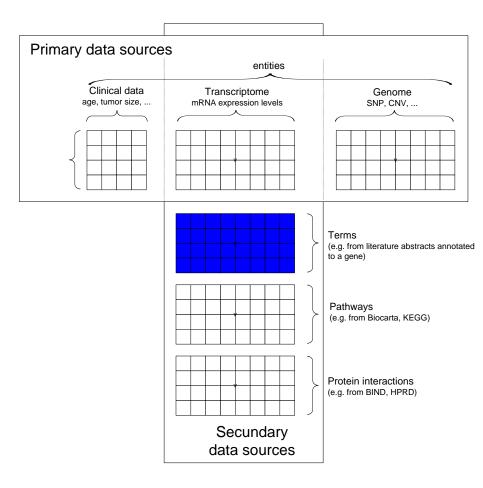


- Primary data is patient specific
- Secondary data is entity specific
 - Gene in genome

- mRNA in transcriptome
- Protein in proteome

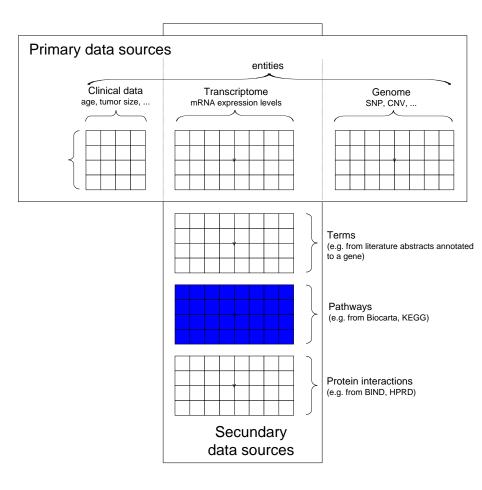


- Primary data is patient specific
- Secondary data is entity specific
 - Gene in genome
 - mRNA in transcriptome
 - Protein in proteome



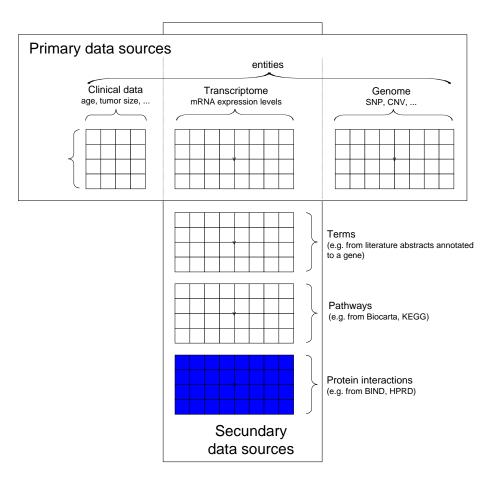
- Primary data is patient specific
- Secondary data is entity specific
 - Gene in genome

- mRNA in transcriptome
- Protein in proteome

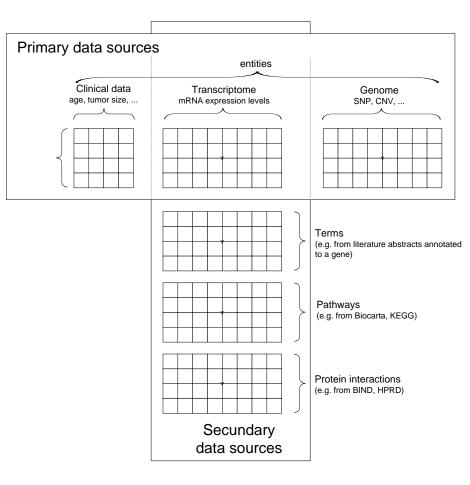


- Primary data is patient specific
- Secondary data is entity specific
 - Gene in genome

- mRNA in transcriptome
- Protein in proteome



- Primary data is patient specific
- Secondary data is entity specific
 - Gene in genome
 - mRNA in transcriptome
 - Protein in proteome
- Secondary data integration is motivated by its availability in publicly available databases
 - IntAct
 - Reactome
 - KEGG
 - TRANSFAC



Aims

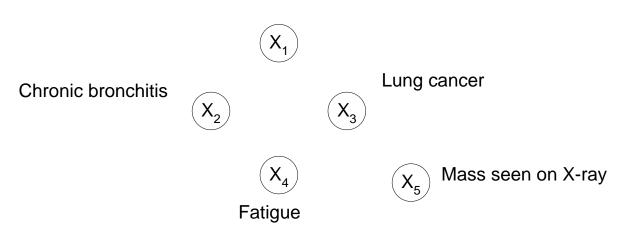
- 1. Modeling separate primary data sources
 - Clinical data modeling ovarian masses with Bayesian networks
 - Genomic data modeling CNAs using a special class of Bayesian networks on BRCA1-mutated and sporadic ovarian cancers
- 2. Integration of primary data
 - Breast cancer
 - Rectal cancer
- 3. Integration of secondary data

Olivier Gevaert

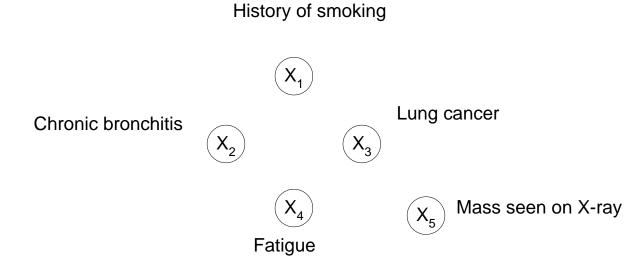
Toy example

- What is a Bayesian network?
 - 5 variables related to lung cancer: X_1 , X_2 , X_3 , X_4 and X_5
 - All variables can have two values: Yes/No

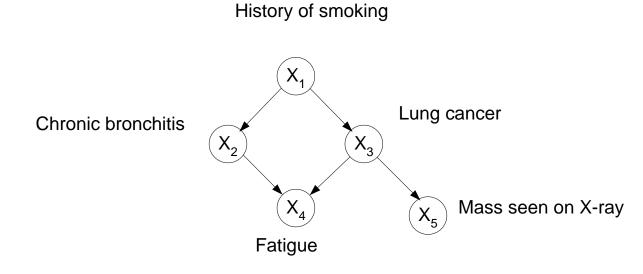
History of smoking



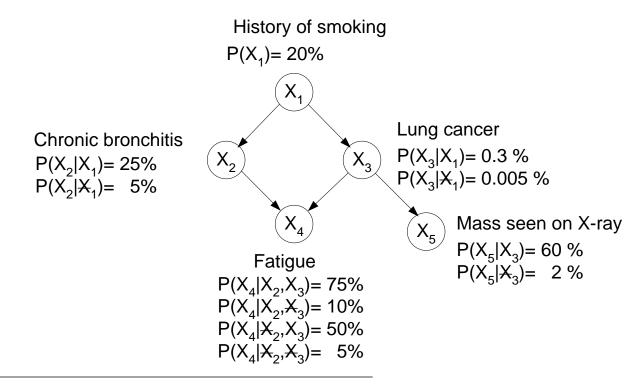
• A Bayesian network consists of two parts



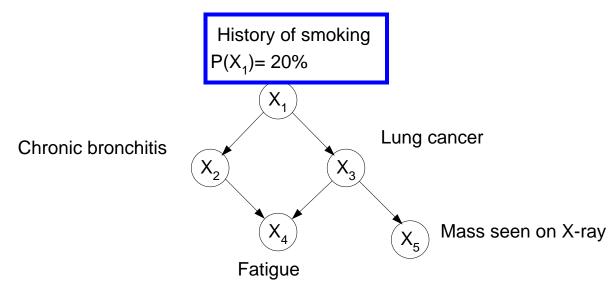
- A Bayesian network consists of two parts
 - Structure: directed acyclic graph



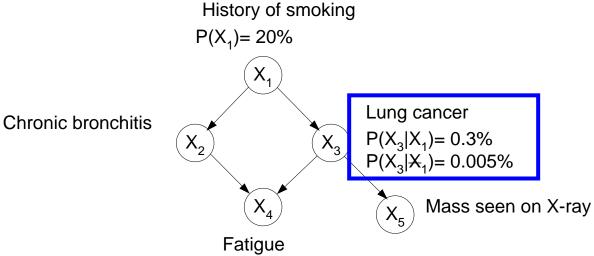
- A Bayesian network consists of two parts
 - Structure: directed acyclic graph
 - Parameters: conditional probability tables (CPT)



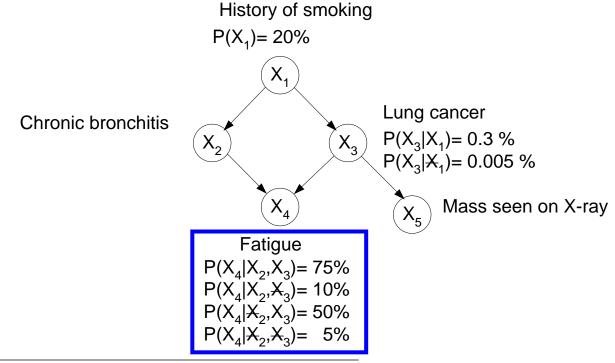
- A Bayesian network consists of two parts
 - Structure: directed acyclic graph
 - Parameters: conditional probability tables (CPT)



- Two parts
 - Structure: directed acyclic graph
 - Parameters: conditional probability tables (CPT)

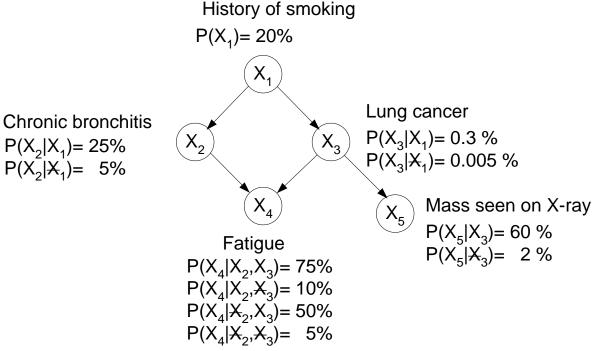


- Two parts
 - Structure: directed acyclic graph
 - Parameters: conditional probability tables (CPT)

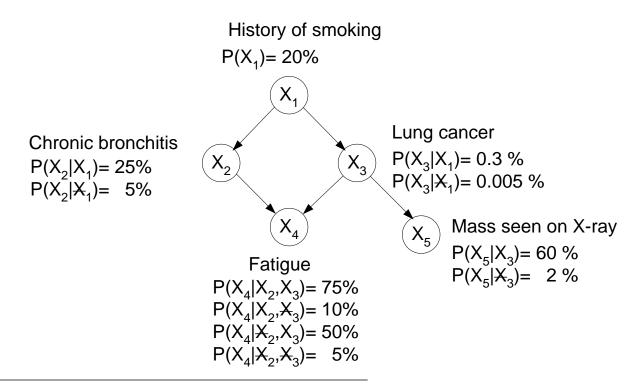


Olivier Gevaert

- Two parts
 - Structure: directed acyclic graph
 - Parameters: conditional probability tables (CPT)

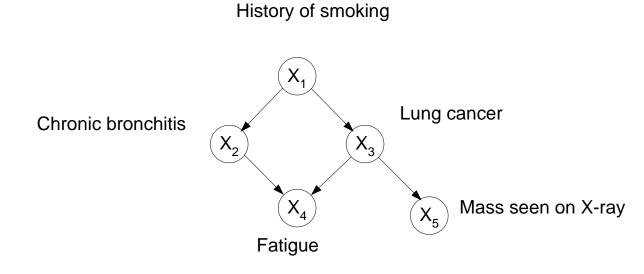


• In most cases both the structure and the parameters are not known

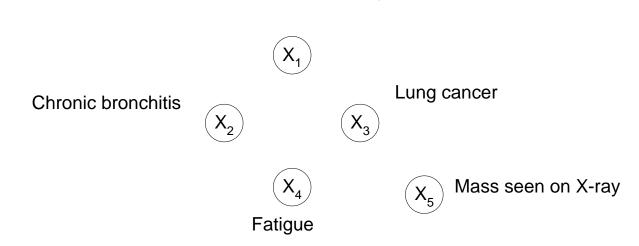


8 December 2008

• In most cases both the structure and the parameters are not known

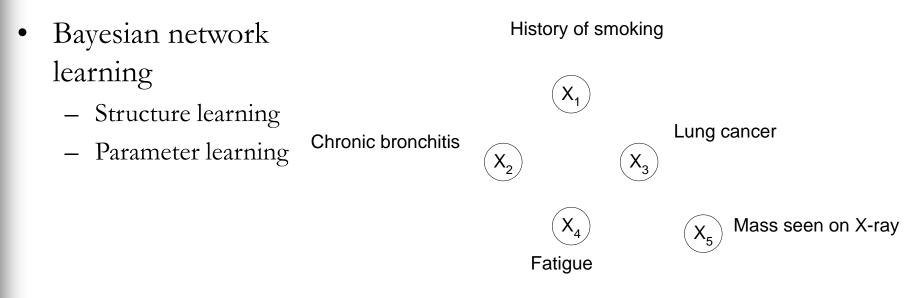


- In most cases both the structure and the parameters are not known
- And have to be learned from data



History of smoking

- In most cases both the structure and the parameters are not known
- And have to be learned from data



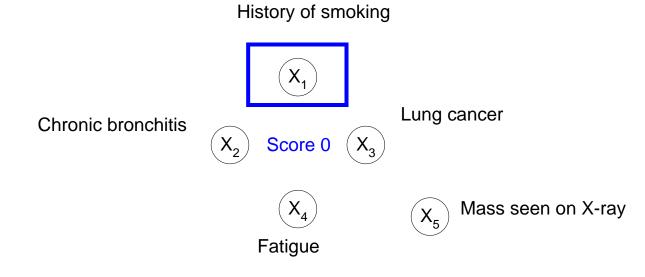
- Greedy search with Bayesian Dirichlet scoring metric
- Reflects how well a structure has produced the data

$$p(S|D) \propto \prod_{i=1}^{n} \prod_{j=1}^{q_i} \left[\frac{\Gamma(N_{ij})}{\Gamma(N_{ij}+N_{ij})} \right] \prod_{k=1}^{r_i} \frac{\Gamma(N_{ijk}+N_{ijk})}{\Gamma(N_{ijk})} \quad P(S)$$

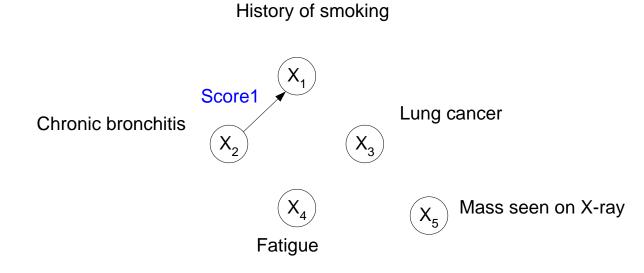
Scoring structures based on data

BIOInformatics

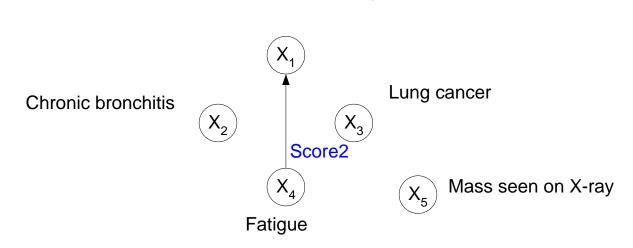
- Greedy search
 - Model 0



- Greedy search
 - Model 0
 - Model 1

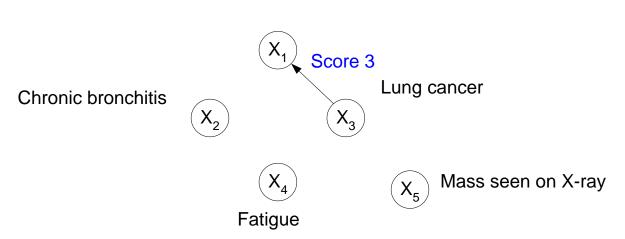


- Greedy search
 - Model 0
 - Model 1
 - Model 2



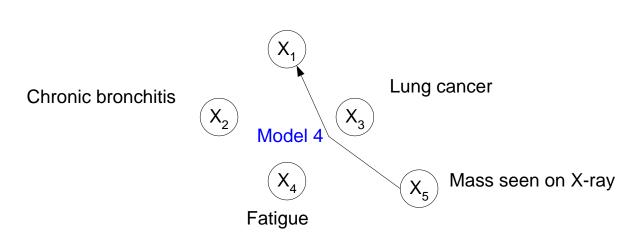
History of smoking

- Greedy search
 - Model 0
 - Model 1
 - Model 2
 - Model 3



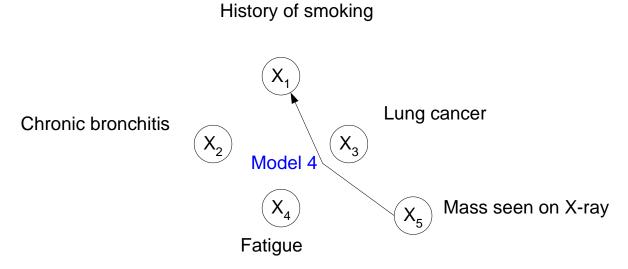
History of smoking

- Greedy search
 - Model 0
 - Model 1
 - Model 2
 - Model 3
 - Model 4



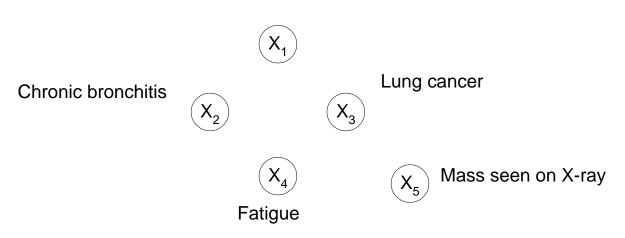
History of smoking

- Greedy search
 - Model 0: best model
 - Model 1
 - Model 2
 - Model 3
 - Model 4

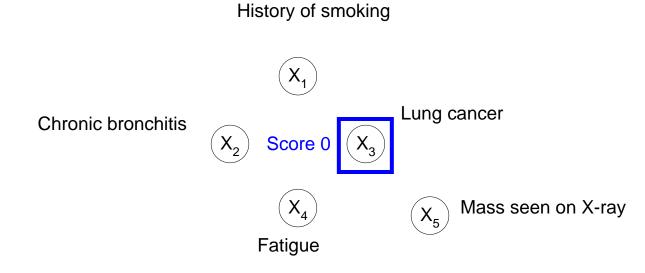


- Best of these models is chosen
 - Model 0 with no edges
 - No edges added \Rightarrow move to next variable

History of smoking

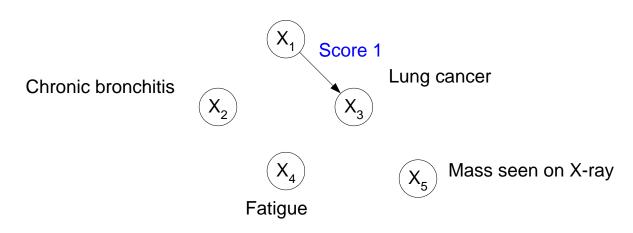


- Suppose X₃ is next variable
- Start greedy search for X₃
 - Model 0

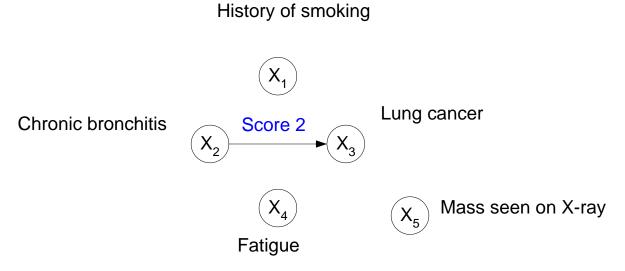


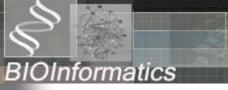
- Suppose X₃ is next variable
- Start greedy search for X₃
 - Model 0
 - Model 1

History of smoking

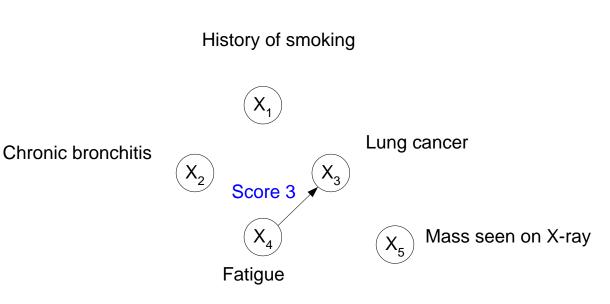


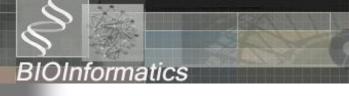
- Suppose X₃ is next variable
- Start greedy search for X₃
 - Model 0
 - Model 1
 - Model 2



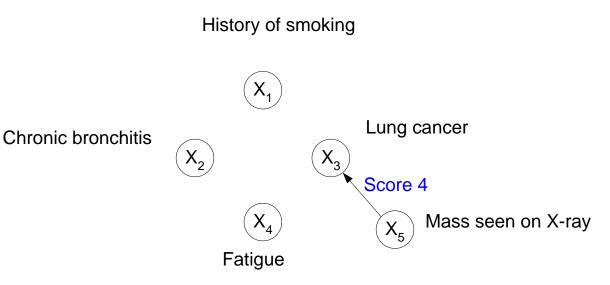


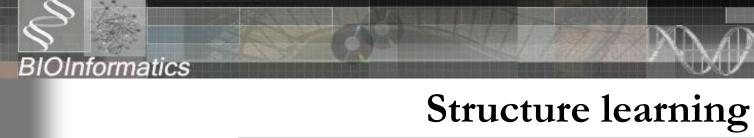
- Suppose X₃ is next variable
- Start greedy search for X₃
 - Model 0
 - Model 1
 - Model 2
 - Model 3



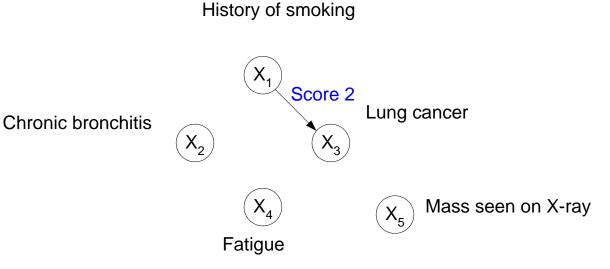


- Suppose X₃ is next variable
- Start greedy search for X₃
 - Model 0
 - Model 1
 - Model 2
 - Model 3
 - Model 4

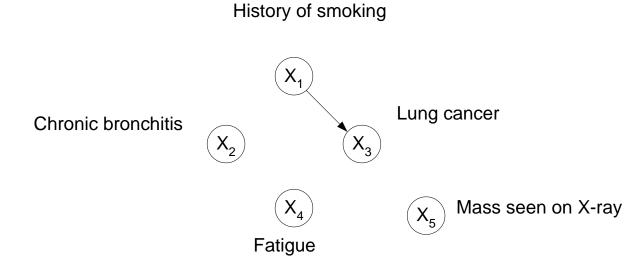


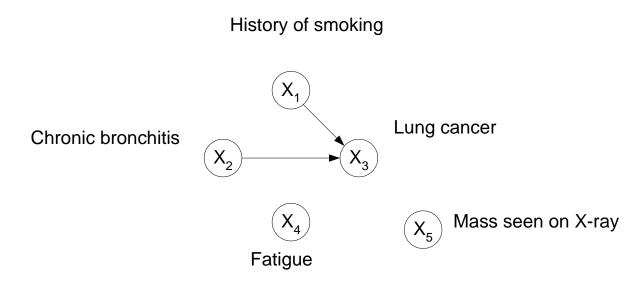


- Suppose X₃ is next variable
- Start greedy search for X₃
 - Model 0
 - Model 1
 - Model 2
 - Model 3
 - Model 4



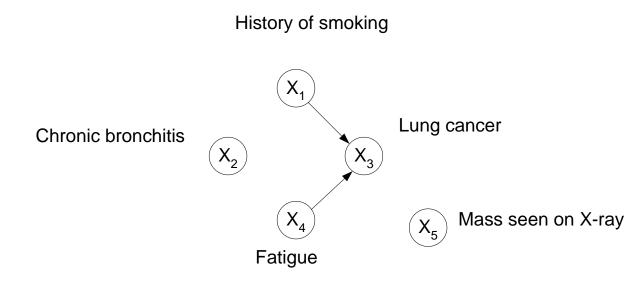
- Model 2
 - Add second edge if score is improved upon





BIOInformatics

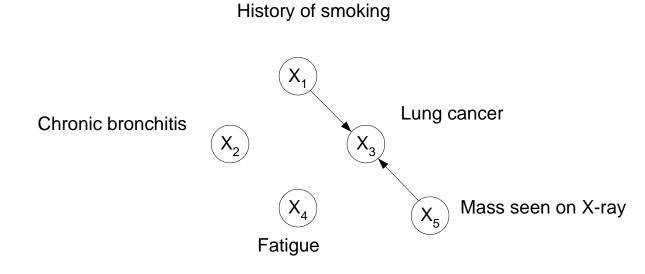
Structure learning



BIOInformatics

Structure learning

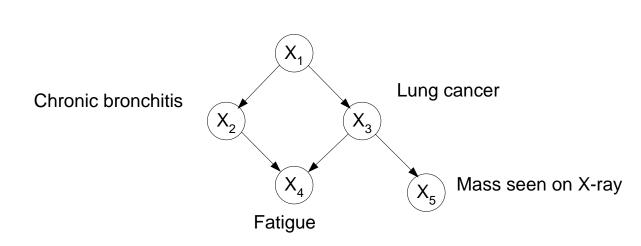
- Second edge does not improve model
- Repeat this for all variables



Structure learning

- Second edge does not improve model
- Repeat this for all variables
- Final structure

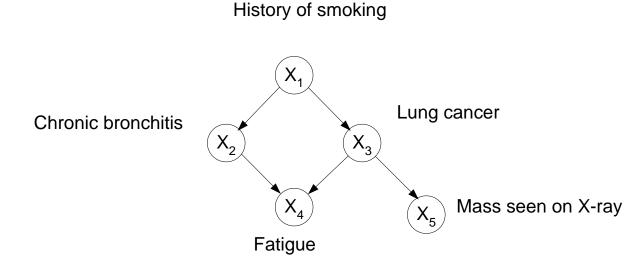
Olivier Gevaert



History of smoking

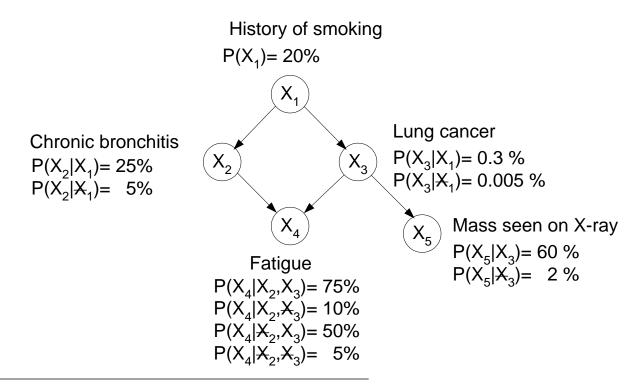
Parameter learning

- Counting the number of times each situation occurs
- Conditioned on the parents



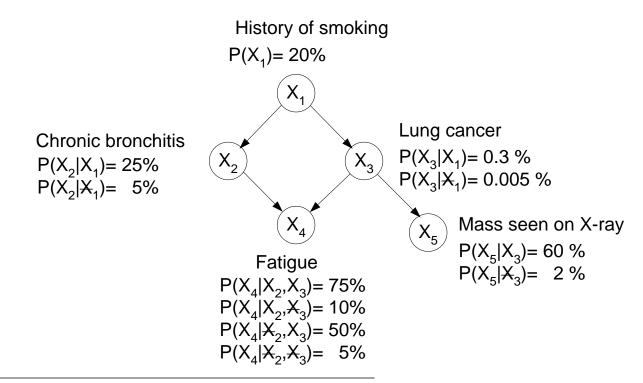
Parameter learning

- Counting the number of times each situation occurs
- Conditioned on the parents



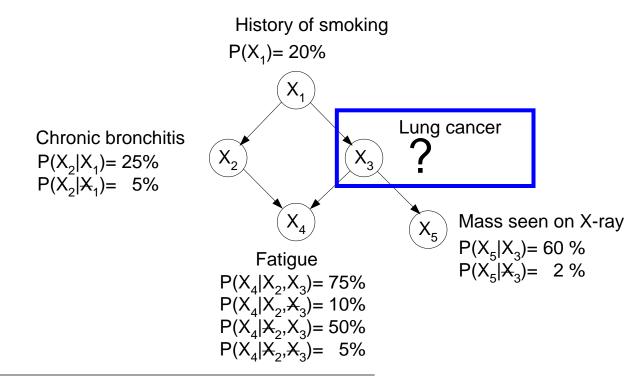
Prediction

• Predict the presence of lung cancer on new patients



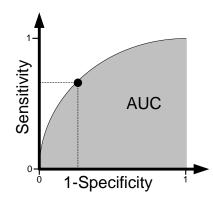
Prediction

- Predict the presence of lung cancer on new patients
- New data where the presence of lung cancer is not known



Performance evaluation

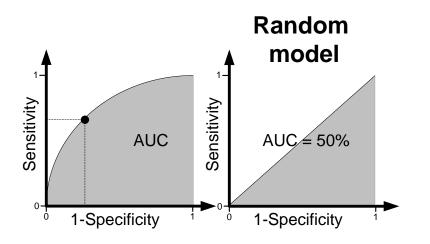
- By comparing the predictions with the true value we can evaluate if the model has a good performance
- Area Under the ROC curve



Olivier Gevaert

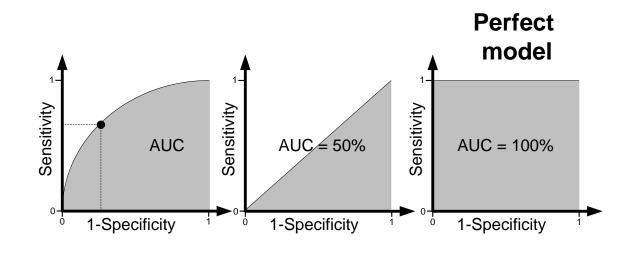
Performance evaluation

- By comparing the predictions with the true value we can evaluate if the model has a good performance
- Area Under the ROC curve
 - AUC of a random model is 50%



Performance evaluation

- By comparing the predictions with the true value we can evaluate if the model has a good performance
- Area Under the ROC curve
 - AUC of a random model is 50%
 - AUC of a perfect model is 100%



Overview

- Motivation
- Bayesian networks
- Results
 - Aim 1: modeling primary data
 - Case 1: Clinical data
 - Case 2: Genomic data
 - Aim 2: integrating primary data
 - Case 1: integrating clinical and microarray data
 - Case 2: integrating microarray and proteomics data
 - Aim 3: integrating secondary data
- Conclusions
- Future work

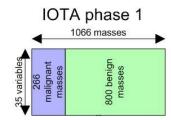
Clinical data

The IOTA project Benign vs. malignant ovarian masses

- Data gathered by the International Ovarian Tumor Analysis consortium (IOTA)
 - Standardized multi-centric collection of clinical data
 - Aim predict malignancy of ovarian masses based on clinical data
 - > 60 variables collected, 32 selected relevant for prediction
- Data gathered in three phases:
 - Phase 1: 1066 patients in 9 European centers
 - Phase 1b: 507 patients in 3 centers (internal validation)
 - Phase 2: 1938 patients in 19 International centers (old and new).

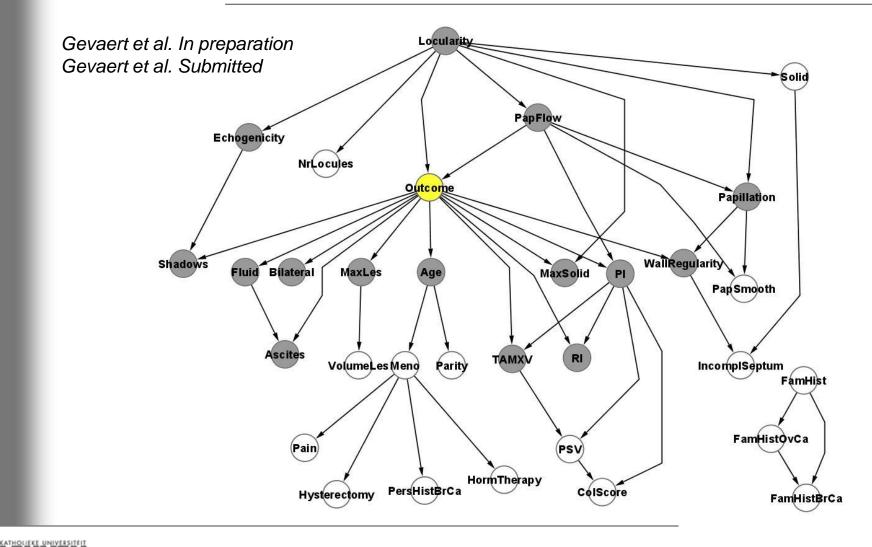
BIOInformatics

Overview

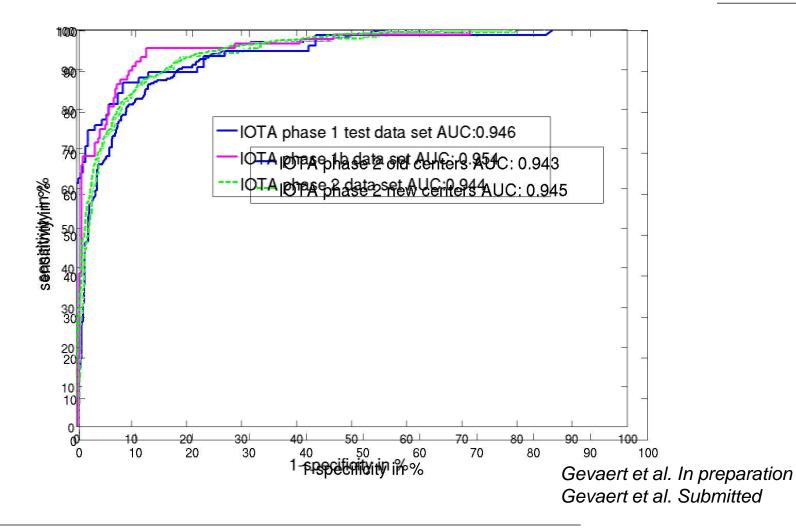


Olivier Gevaert

S BIOInformatics



Results



Comparison with Logistic regression

				1
Data set	BN1	LR1	LR2	
IOTA phase 1 test data	0.946	0.942	0.920	Γ
IOTA phase 1b	0.954	0.950	0.950	
IOTA phase 2	0.944	0.951	0.934	
IOTA phase 2 old	0.943	0.945	0.918	Γ
IOTA phase 2 new	0.945	0.956	0.949	

BN1 Bayesian network

- LR1 Logistic regression model with 12 variables
- LR2 Logistic regression model with 6 variables

Gevaert et al. In preparation Gevaert et al. Submitted

BIOInformatics

Conclusion

- Bayesian networks are an alternative for more traditional modeling of clinical data
- Similar performance compared to logistic regression
- Network allows analysis of relationships between variables

Genomic data

BRCA1-mutated vs. sporadic ovarian cancers

Olivier Gevaert

Introduction

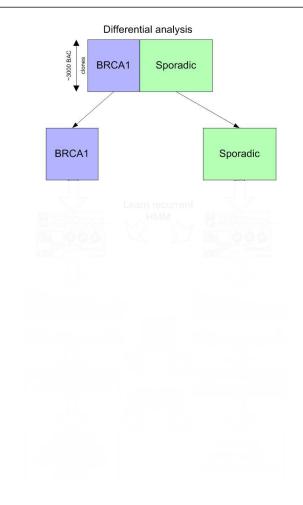
- Approximately 5%-10% of ovarian cancers are caused by inheriting mutations in the BRCA1 or BRCA2 gene
- These BRCA-mutated tumors behave differently compared to the sporadic ovarian cancers
- We investigated if there are differences in the genomes of **BRCA1-mutated** vs. **sporadic ovarian cancers**

Overview

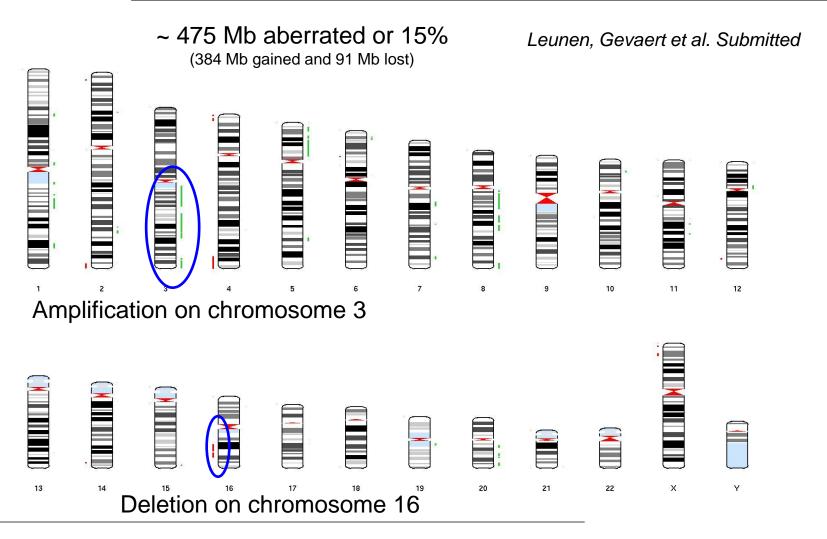
- Tumor samples gathered at the University Hospitals Leuven:
 - 5 BRCA1-mutated ovarian cancers
 - 8 sporadic ovarian cancers
- All 13 samples subjected to arrayCGH technology
- ArrayCGH data model:
 - Subclass of Bayesian networks
 - Recurrent Hidden Markov model (RHMM)
 - To discover recurrent Copy Number Alterations (CNA)

Overview

- RHMM modeling both groups separately
- This results in the identification of recurrent CNA genome wide
- Extract genes from Ensembl database
- Pathway enrichment

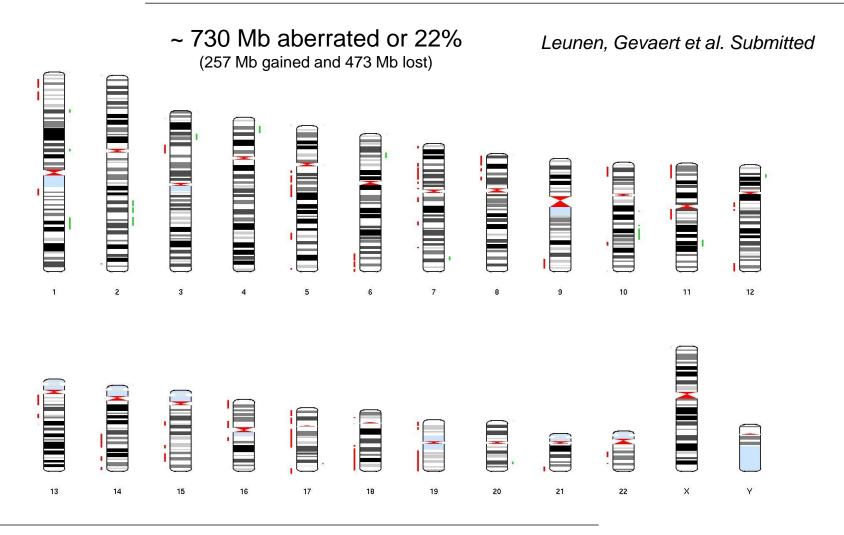


Results: sporadic genome



Olivier Gevaert

Results: BRCA1 genome

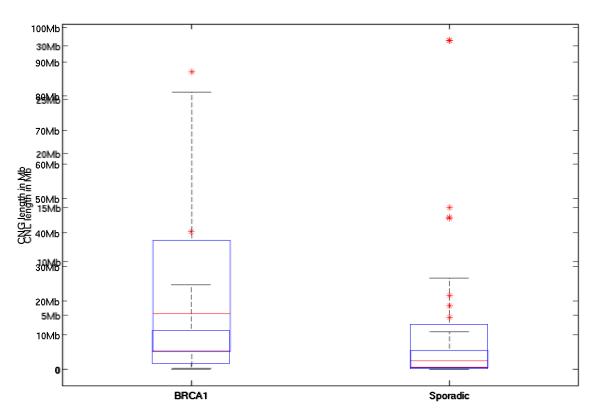


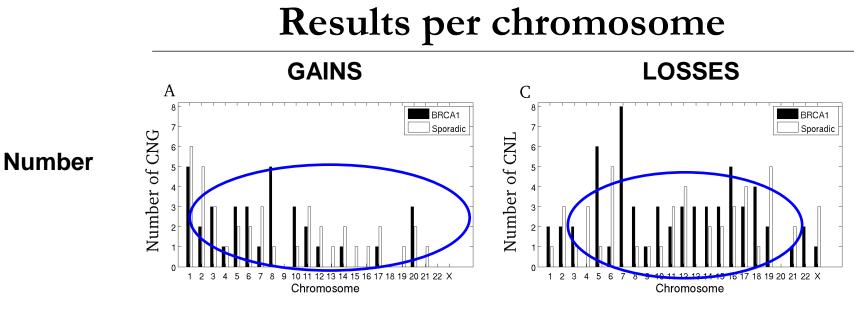
Olivier Gevaert

Results

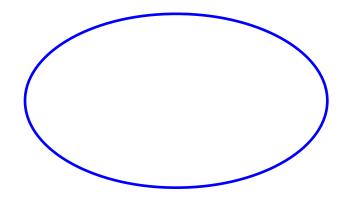
Length of copy number gaines

Leunen, Gevaert et al. Submitted





Length



Olivier Gevaert

Results

Pathways enriched in the BRCA1 group

Leunen, Gevaert et al. Submitted

Signature	Gene set name from MSigDB	P- value	Q- value	Overlapping Genes
GAINED	HOX GENES	0.00020	0.08684	HOXD10 HHEX HOXD11 HOXD9 HOXD13 HOXD1 HOXD12 HOXD4 HOXD3
GAINED	MATRIX METALLOPROTEINASES	0.00020	0.08684	MMP3 MMP10 MMP13 MMP27 MMP1 MMP20 MMP7 MMP8 MMP12
LOST	BREAST CANCER ESTROGEN SIGNALING	0.00180	0.09824	SPRR1B CLDN7 TP53 GATA3 ERBB2 CCND1 SCGB1D2 THBS2 C3 KLK5 FOSL1 KRT18 DLC1 KRT19 CTSB IL6ST RPL27 FLRT1 NGFR SERPINE1 IL2RA SCGB2A2 BCL2 HMGB1 SCGB2A1 TNFAIP2 AZGP1 ESR1 EGFR ESR2 RPL13A S100A2 SERPINB5 THBS4 BAD COL6A1 ACTB
LOST	TUMOR SUPRESSOR	0.00200	0.09824	BRCA2 CDKN2D BRCA1 LCMT2 EP300 TSC2 CDKN1C CFL1 TP53 RB1 NF2 CREBBP ACTB
LOST	HOX GENES	0.00223	0.09852	HOXA6 CBX8 LHX2 HOXB5 HOXB13 HOXA5 EZH1 HOXA2 HOXA4 PHC2 HOXA11 HOXA1 CBX4 HOXB3 HOXA3 DLX4 HOXA10 HOXB2 HOXB7 HOXA7 HOXB1 HOXB9 HOXA9 HOXB6

Conclusion

- Complex but powerful modeling strategies allows to identify recurrent CNAs
- CNAs from the two groups of patients are different
- Different pathways enriched
- We hypothesize that BRCA1-mutated tumors are driven by different biological processes and may benefit from different therapy strategies.

Aim 2: Integration of primary data sources

Data

- Case 1: Integration of clinical and microarray data
 van 't Veer data set
- Case 2: Integration of microarray and proteomics data
 - Rectal cancer data set (University Hospitals Leuven)

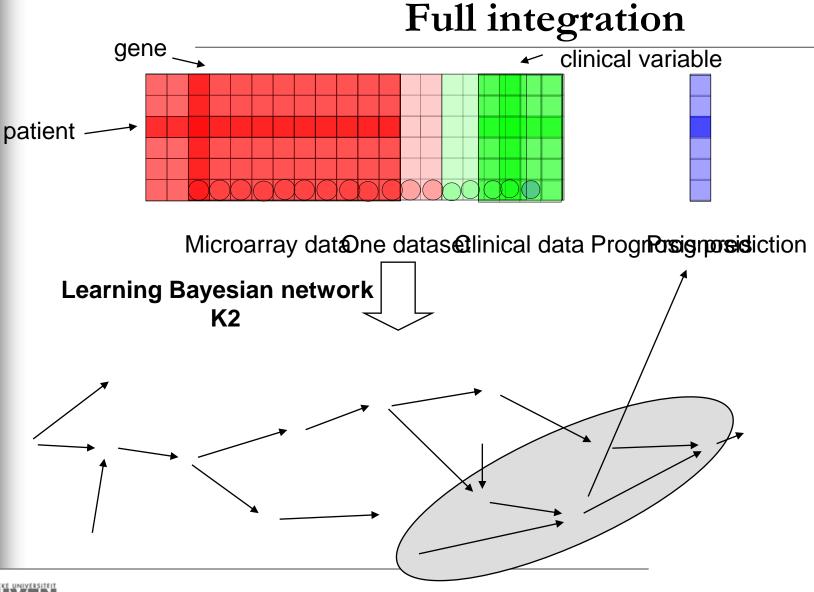
Case 1: van't Veer

- Breast cancer microarray data van 't Veer et al. Nature 2002
- Microarray data consisted of ~20000 genes
- Clinical data consists of 7 variables:
 - age, diameter, grade, angioinvasion, ERP, PRP, lymphocytic infiltration
- Binary outcome variable had two states:
 - good prognosis (disease free interval of at least 5 years)
 - poor prognosis (recurrence within 5 years)

Data integration

- We have defined different methods for integrating both data sources with Bayesian networks
 - Full integration
 - Decision integration
 - Partial integration
- The difference between these methods lies "when" the data integration takes place

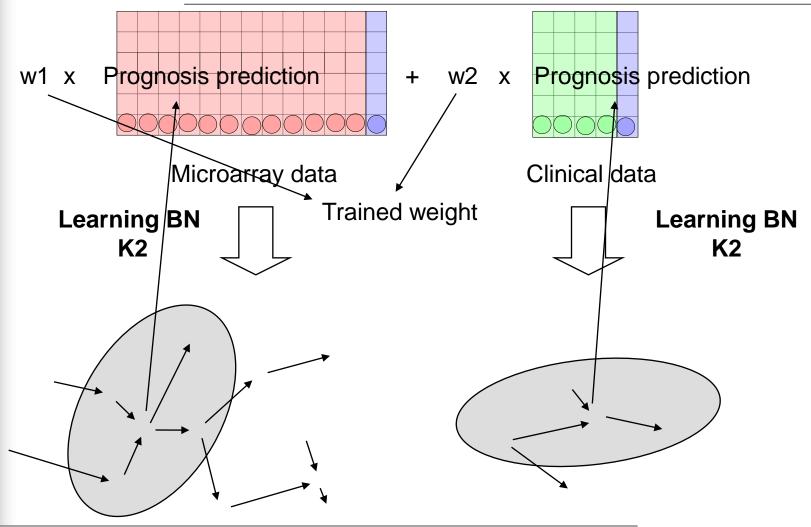
, BIOInformatics



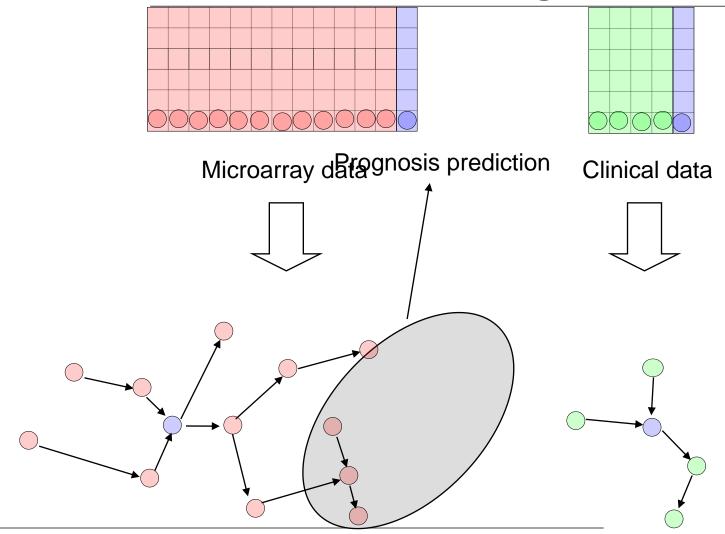
N Olivier Gevaert

S BIOInformatics

Decision integration



Partial integration



Olivier Gevaert

Results

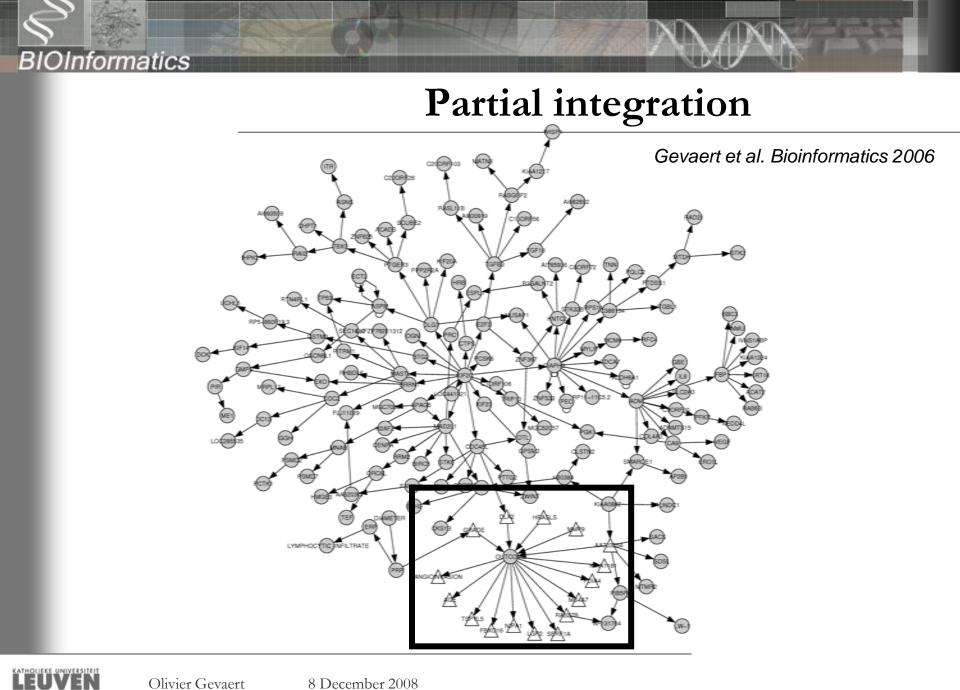
• Partial integration performs best

Olivier Gevaert

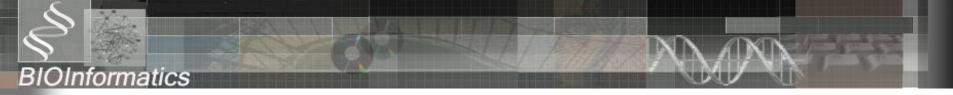
• Full integration is not better than either data source separately

Method	AUC S	Std
Clinical data	0.751	0.086
Microarray data	0.750	0.073
Decision integration	0.773	0.071
Partial integration	0.793	0.068
Full integration	0.747	0.099

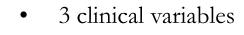
Gevaert et al. Bioinformatics 2006



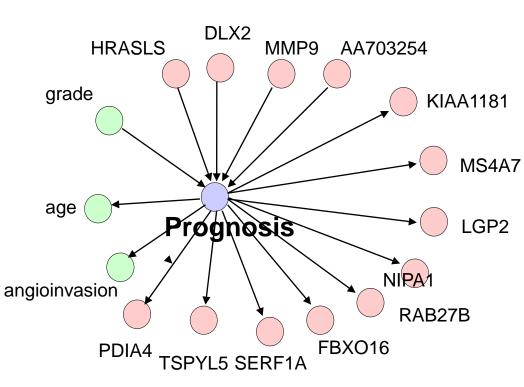
Olivier Gevaert



Results



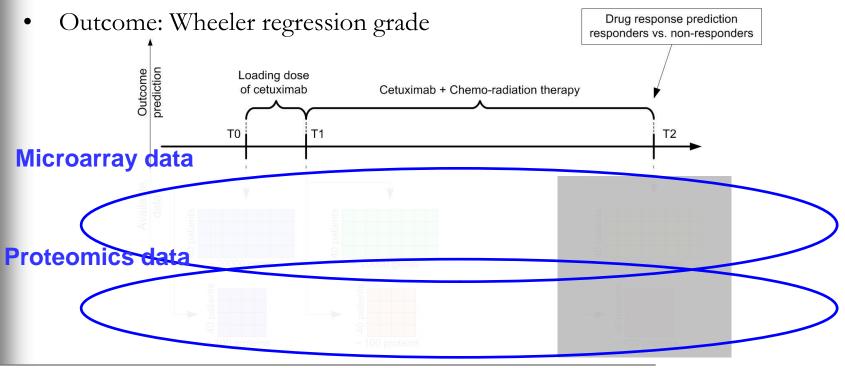
• 13 genes



Gevaert et al. Bioinformatics 2006

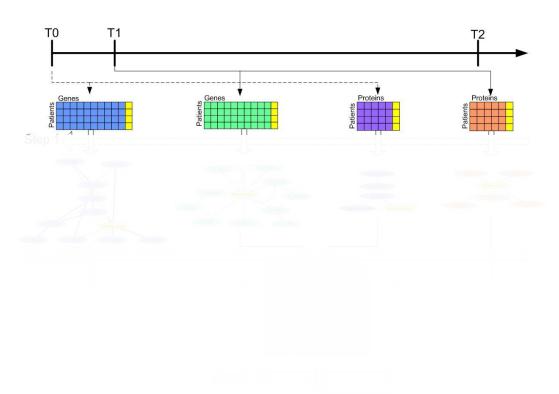
Case 2: rectal cancer

- Rectal cancer therapy timeline:
 - T0: start of therapy
 - T1: after 1 loading dose of cetuximab
 - T2: before surgery



Overview

- Partial integration -> Bayesian integration
 - Step 1: represent each data source with its posterior distribution
 - Step 2: integrate posterior in a structure prior
 - Step 3: learn integrated network
 - Step 4: estimate predictive performance



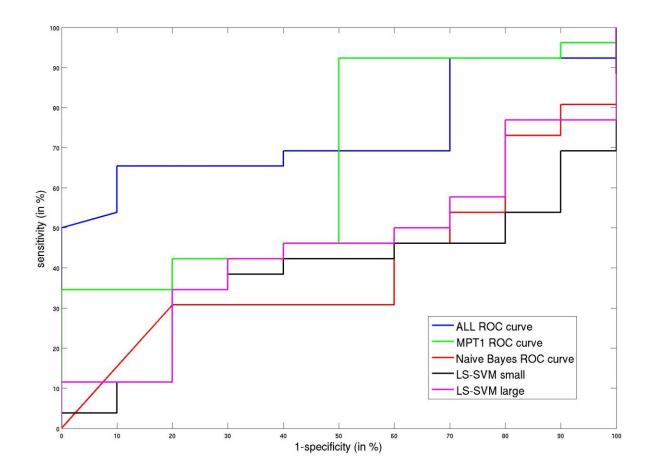
BIOInformatics

Results

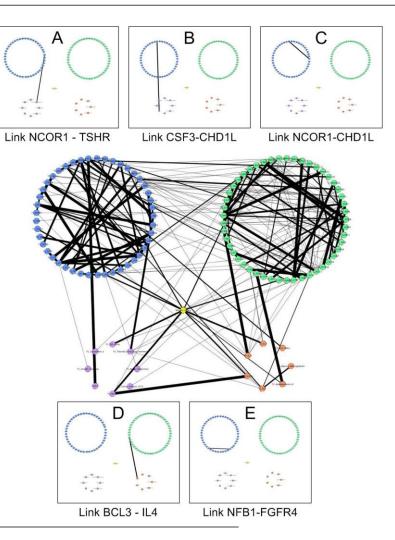
Model abbreviation	AUC	SE
ALL	0.73	0.08
МРТ0	0.23	0.09
MPT1	0.67	0.1
MT0T1	0.54	0.11
PT0T1	0.55	0.12
MT0	0.41	0.1
MT1	0.55	0.11
РТО	0.49	0.11
PT1	0.57	0.1
Partial integration	0.61	0.11
Full integration	0.51	0.1
Naïve Bayes	0.41	0.1
LS-SVM small	0.39	0.1
LS-SVM large	0.45	0.1

Olivier Gevaert

Results ROC curve



- Thickness of the edge reflects its confidence
- A, B, C, D and E are links with strong support in literature



Conclusions

- We have developed a Bayesian network integration framework
- The breast cancer and rectal cancer case show that integrating information improves predictive performance.
- Additionally, new biological hypothesis are generated

Aim 3: Integration of secondary data sources

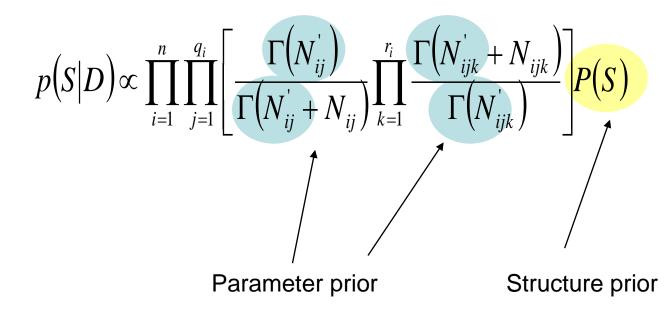
Motivation

- Recently there has been a significant increase of publicly available databases containing secondary data:
 - E.g Reactome, Transfac, IntAct, Biocarta, KEGG
- However still many knowledge is contained in publications in unstructured form
- ... and not deposited in public databases where it can be easily used by algorithms
- Therefore we investigated if literature abstracts in the structure prior of a Bayesian network improved prognosis prediction

Informatics

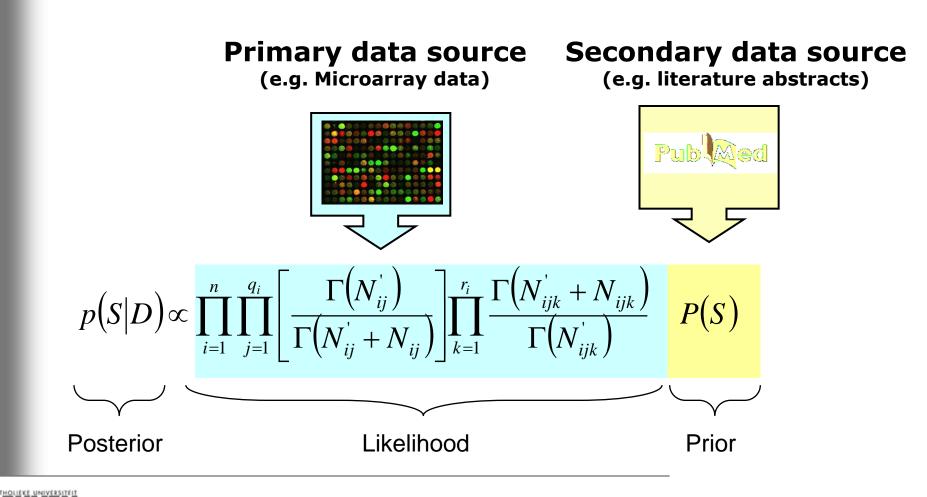
Structure prior

- Bayesian model building allows integration of prior information:
 - Structure prior
 - Parameter prior (not used \Rightarrow uninformative prior)



Heckerman, Machine Learning, Vol. 20 (1995), pp. 197-243.

Integration of secondary data



Olivier Gevaert

Text mining

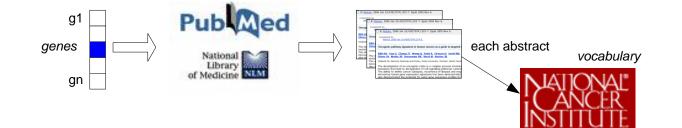
Olivier Gevaert

Text mining

Olivier Gevaert

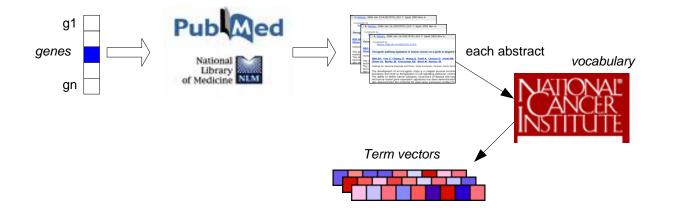
Text mining

Olivier Gevaert



Text mining

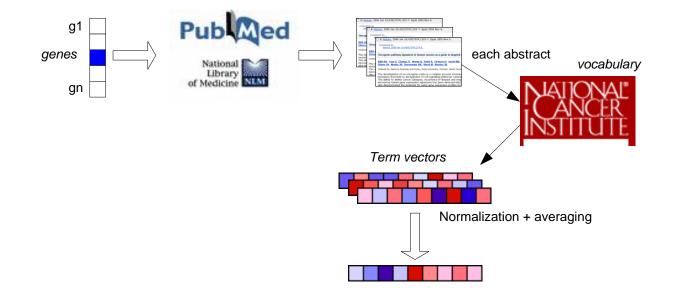
Olivier Gevaert



Text mining

KATHOLIEKE UNIVERSITEIT

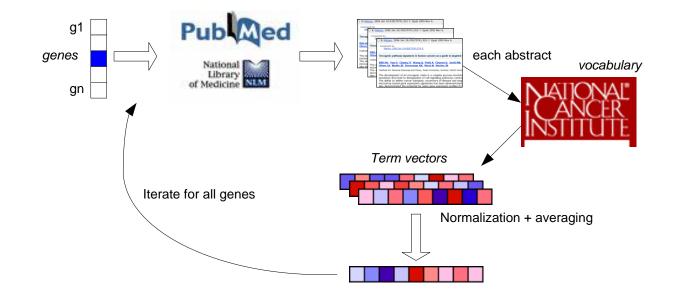
Olivier Gevaert



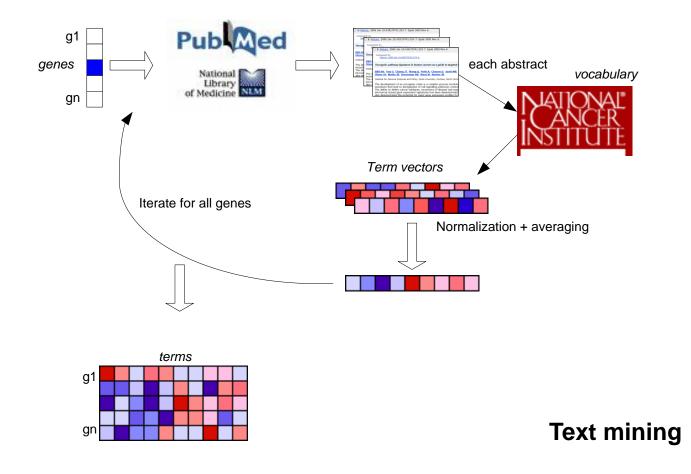
Text mining

LEUVEN

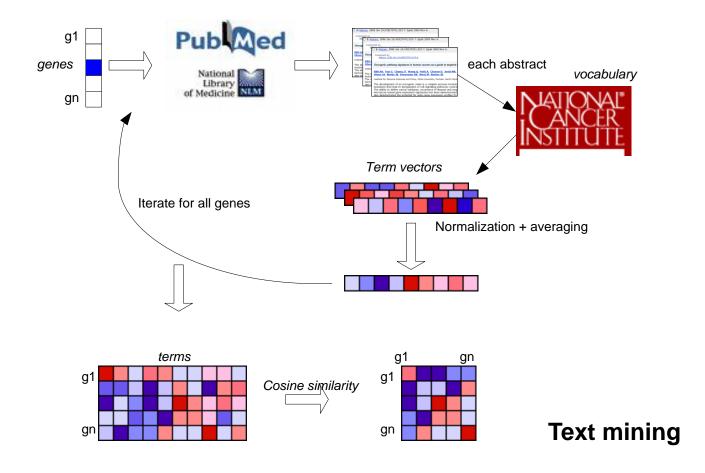
Olivier Gevaert



Text mining



ATHOLIEKE UNIVERSITEI

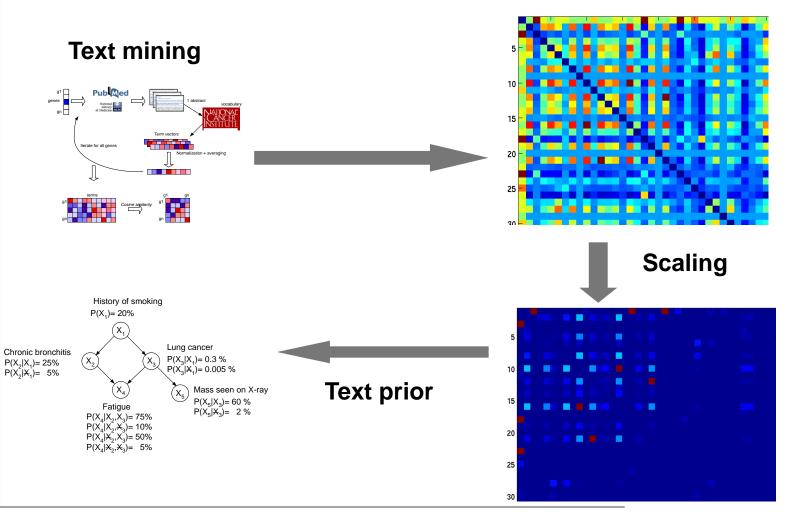


Olivier Gevaert 8 De

Structure prior: scaling

- Scaling
 - A fully connected Bayesian network can explain any data set but we want simple models
 - The prior contains many gene-gene similarities however we will not use them directly
 - We will introduce an extra parameter: mean density
 - Structure prior will be scaled according to this mean density
- Low mean density ⇒ less edges ⇒ less complex networks

Summary



Olivier Gevaert

Results

• First case: Breast cancer (van't Veer data)

Mean density	Text prior mean AUC	Uniform prior mean AUC	P-value
1	0.80 (0.08)	0.75(0.08)	0.000396 [§]
2	0.80 (0.08)	0.75(0.07)	<2e-06§
3	0.79 (0.08)	0.75(0.08)	0.00577 [§]
_4	0.79 (0.07)	0.74(0.08)	<6e-06§

Average number of parents per variable

Gevaert et al. PSB 2008 Gevaert et al. Ann NY Acad Sci 2007

Results

- Second Case: Bild data (3 data sets)
 - Breast
 - Ovarian
 - Lung
- Mean density is set to 1 based on van't Veer results

Data set	Text prior mean AUC	Uniform prior mean AUC	P-value
Breast	0.79	0.75	0.00020
Ovarian	0.69	0.63	0.00002
Lung	0.76	0.74	0.02540

Gevaert et al. PSB 2008 Gevaert et al. Ann NY Acad Sci 2007

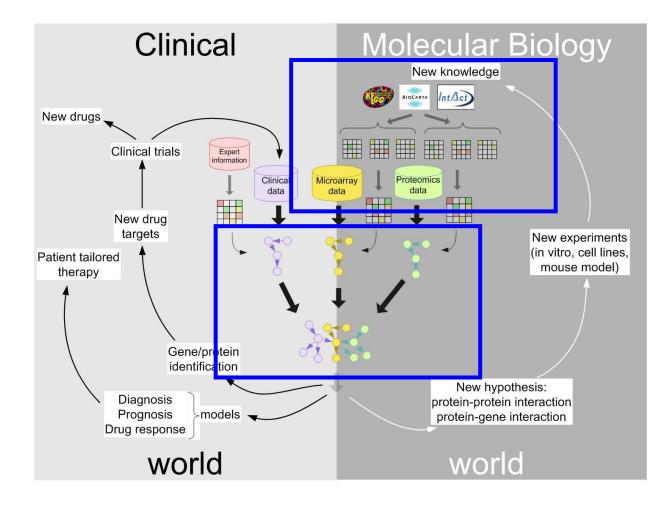
Conclusions

- The text prior improves outcome prediction of cancer compared to not using a prior
- Both on the initial data set and the validation data sets
- Also allows to select a set of genes based on both gene expression data and knowledge available in the literature related to cancer outcome

Overall conclusions

- Our main goal was to develop a Bayesian network integration framework to model primary and secondary data
- First, we illustrated Bayesian network model on two primary data sources:
 - Clinical data
 - Genomic data
- Secondly, we illustrated the integration of primary data sources on two cases
 - Integrating clinical and microarray data of breast cancer patients
 - Integrating microarray and proteomics data of rectal cancer patients
- Thirdly, we integrated secondary data in the form of literature abstracts

Overall conclusions



Olivier Gevaert

Future work

- We see two important future directions
 - Integration of other secondary data sources:
 - Protein-DNA interactions (TRANSFAC), Pathway information (KEGG, Biocarta), ...
 - Main issue is standardization of databases: being solved thanks to efforts such as BIOPAX
 - New technologies

BIOInformatics

- Exon microarrays, SNP microarrays, second generation sequencing will probably unlock a whealth of information
- Amount of data will increase super exponentially which may cause serious computational problems
- Possible solution is parallellization: HPC cluster K.U.Leuven
 - Calculation time on VIC cluster used during PhD amounts to 1.4 years of CPU time

Acknowledgements

- ESAT-Sista
 - Prof. Bart De Moor
 - Bioinformatics group
 - Frank De Smet
 - Nathalie Pochet
 - Anneleen Daemen
 - Raf van de Plas
 - Steven van Vooren
- UZ Leuven, Gynecology
 - Prof. Dirk Timmerman
 - Prof. Ignace Vergote
 - Toon Van Gorp
 - Isabelle Cadron
 - Caroline van Holsbeke
 - Karin Leunen

- Prof. Karin Hautermans
- University Hospital St. Luc (Brussels)
 - Prof. Jean-Pascal Machiels

