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Motivation

• Solution: 

– Medical decision support modeling

– Building a mathematical model on the data 

– Use this model to predict patient outcome
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Medical decision support modeling

• History of more than 30 years 

• Many different methods exist 

– Logistic regression 

– Artificial Neural networks

– Support vector machines

– Bayesian networks

– …

• The general idea is the same

– Assist clinicians when making decisions
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Microarray technology

• The rise of new technology 

changed       medical decision support

into        biomedical decision support

• New technologies allow to gather 

biological data

• When studying cancer, this has 

particular advantages 

– Biological

– Individualized

– Genome-scale
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Molecular biology

• Short introduction in molecular 

biology

– DNA consists of 4 bases

• Adenine  A

• Guanine  G

• Cytosine  C

• Thymine  T

– Human DNA consists of a sequence 

of two times 3 billion of these bases
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Molecular biology

• DNA stores the genetic 

information in the form 

of  genes

• Gene is a small piece of  

DNA

• Central dogma of  

molecular biology

– Transcription

• Gene  mRNA

– Translation

• mRNA  protein
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The human genome project

• In 2001 the first draft sequence of the human genome was 

published

– DNA sequence of 3 billion A,C,T and G unraveled

• This resulted in a more consistent map of all the genes in the 

human genome (~25000)

• Concurrently a technology to measure the mRNA activity of all 

genes was developed: microarray technology

– Chip 

– Probes representing all 25000 genes

– Measure mRNA activity of all genes in the genome
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Microarray technology
Tumor sample

Control sample Labeling

Hybridization

Scanning DATA
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Microarray data

• Microarray technology produces huge quantities of data

– ~ 25000 values per patient

• This data can also be used for decision support

• Virtually impossible for a clinician to interpret the data directly

• Biomedical decision 

support modeling is the 

only option
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Omics

• Microarray technology only 

measures mRNA or the 

transcriptome

• Other levels of molecular 

biology exist such as 

– Genome

– Proteome

• These levels are often called 

omics
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Omics

• Microarray technology is not the only “omics” technology

• Other technologies have emerged that profile different levels of 

molecular biology
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Omics

• Mass spectrometry based proteomics allows to target the 

proteome
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ArrayCGH

• Also the genome is more variable than previously thought

– Single base differences between individuals (SNPs)

– Copy number variations 

• Large pieces of genome sequence with more or less copies

• Array Comparative Genomic Hybridization (arrayCGH)
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Motivation

?
DATA

Clinician

Model

Diagnosis

Prognosis

Response to

therapy

• All these omics technologies have in common that they 

provide data at a genome scale level

– Many variables per patient

– Not possible to interpret the data manually

• Methods needed to model 

all these data
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Motivation

• Our aim is to investigate if integrating these heterogeneous and 

high-dimensional data using Bayesian networks improves 

predictive performance

• To support the clinician in making decisions related to the clinical 

management of diseases:

– Diagnosis

– Prognosis

– Therapy response

• We have defined two types of data
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Primary vs. secondary data

• Primary data is patient specific
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mRNA expression levels
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Clinical data
age, tumor size, ...
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Primary vs. secondary data

• Primary data is patient specific

• Secondary data is entity specific

– Gene in genome

– mRNA in transcriptome

– Protein in proteome

• Secondary data integration is 

motivated by its availability in publicly 

available databases

– IntAct

– Reactome

– KEGG

– TRANSFAC
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Clinical data
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Aims

1. Modeling separate primary data sources

• Clinical data – modeling ovarian masses with Bayesian networks

• Genomic data – modeling CNAs using a special class of Bayesian 

networks on BRCA1-mutated and sporadic ovarian cancers

2. Integration of primary data

• Breast cancer

• Rectal cancer

3. Integration of secondary data
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Bayesian networks



8 December 2008Olivier Gevaert

Toy example

• What is a Bayesian network?

– 5 variables related to lung cancer: X1, X2, X3, X4 and X5

– All variables can have two values: Yes/No

X
1

X
2

X
3

X
4 X

5

History of smoking

Chronic bronchitis
Lung cancer

Fatigue

Mass seen on X-ray
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• A Bayesian network consists of two parts

– Structure: directed acyclic graph

– Parameters: conditional probability tables (CPT)
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Definition

• A Bayesian network consists of two parts

– Structure: directed acyclic graph

– Parameters: conditional probability tables (CPT)
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Definition

• Two parts

– Structure: directed acyclic graph

– Parameters: conditional probability 

tables (CPT)
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Bayesian networks

• In most cases both the structure and the parameters 

are not known
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Bayesian networks

• In most cases both the structure and the parameters 

are not known 

• And have to be learned from data

X
1

X
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X
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X
4 X

5

History of smoking
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Fatigue

Mass seen on X-ray

• Bayesian network 

learning

– Structure learning

– Parameter learning 
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Structure learning

• Greedy search with Bayesian Dirichlet scoring metric

• Reflects how well a structure has produced the data

Scoring structures based on data
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Structure learning

• Greedy search

– Model 0
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Structure learning
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Structure learning

X
1

X
2

X
3

X
4 X

5

History of smoking

Chronic bronchitis
Lung cancer

Fatigue

Mass seen on X-ray

Score 3

• Greedy search

– Model 0

– Model 1

– Model 2

– Model 3



8 December 2008Olivier Gevaert

Structure learning
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Structure learning
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• Greedy search

– Model 0: best model
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Structure learning

• Best of these models is chosen

– Model 0 with no edges

– No edges added  move to next variable
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Structure learning

• Suppose X3 is next variable

• Start greedy search for X3

– Model 0
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Structure learning
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– Model 0

– Model 1
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Structure learning
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Structure learning
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Structure learning
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Structure learning

• Model 2

– Add second edge if score is improved upon
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Structure learning
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Structure learning
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Structure learning

• Second edge does not improve model

• Repeat this for all variables
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Structure learning

• Second edge does not improve model

• Repeat this for all variables

• Final structure
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Parameter learning

• Counting the number of times each situation occurs

• Conditioned on the parents
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Parameter learning

• Counting the number of times each situation occurs

• Conditioned on the parents
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Prediction

• Predict the presence of lung cancer on new patients
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Prediction

• Predict the presence of lung cancer on new patients

• New data where the presence of lung cancer is not known
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Performance evaluation

• By comparing the predictions with the true value we can evaluate 

if the model has a good performance

• Area Under the ROC curve
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Performance evaluation

Random 

model

• By comparing the predictions with the true value we can evaluate 

if the model has a good performance

• Area Under the ROC curve

– AUC of a random model is 50%
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Performance evaluation

• By comparing the predictions with the true value we can evaluate 

if the model has a good performance

• Area Under the ROC curve

– AUC of a random model is 50%

– AUC of a perfect model is 100%

Perfect 

model
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Overview

• Motivation

• Bayesian networks

• Results

– Aim 1: modeling primary data

• Case 1: Clinical data

• Case 2: Genomic data

– Aim 2: integrating primary data

• Case 1: integrating clinical and microarray data

• Case 2: integrating microarray and proteomics data

– Aim 3: integrating secondary data

• Conclusions

• Future work
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Clinical data

The IOTA project

Benign vs. malignant ovarian masses



8 December 2008Olivier Gevaert

Clinical Data

• Data gathered by the International Ovarian Tumor Analysis 

consortium (IOTA)

– Standardized multi-centric collection of clinical data

– Aim predict malignancy of ovarian masses based on clinical data

– > 60 variables collected, 32 selected relevant for prediction

• Data gathered in three phases:

– Phase 1: 1066 patients in 9 European centers

– Phase 1b: 507 patients in 3 centers (internal validation)

– Phase 2: 1938 patients in 19 International centers (old and new).
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Overview
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Results

Gevaert et al. In preparation

Gevaert et al. Submitted
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Results

Gevaert et al. In preparation

Gevaert et al. Submitted
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Comparison with Logistic regression

Data set BN1 LR1 LR2

IOTA phase 1 test data 0.946 0.942 0.920

IOTA phase 1b 0.954 0.950 0.950

IOTA phase 2 0.944 0.951 0.934

IOTA phase 2 old 0.943 0.945 0.918

IOTA phase 2 new 0.945 0.956 0.949

BN1 Bayesian network

LR1 Logistic regression model with 12 variables

LR2 Logistic regression model with 6 variables

Gevaert et al. In preparation

Gevaert et al. Submitted
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Conclusion

• Bayesian networks are an alternative for more traditional modeling 

of clinical data

• Similar performance compared to logistic regression

• Network allows analysis of relationships between variables
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Genomic data

BRCA1-mutated vs. sporadic ovarian cancers
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Introduction

• Approximately 5%-10% of ovarian cancers are caused by 

inheriting mutations in the BRCA1 or BRCA2 gene

• These BRCA-mutated tumors behave differently compared to 

the sporadic ovarian cancers

• We investigated if there are differences in the genomes of 

BRCA1-mutated vs. sporadic ovarian cancers
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Overview

• Tumor samples gathered at the University Hospitals Leuven:

– 5 BRCA1-mutated ovarian cancers

– 8 sporadic ovarian cancers

• All 13 samples subjected to arrayCGH technology

• ArrayCGH data model: 

– Subclass of Bayesian networks

– Recurrent Hidden Markov model (RHMM)

– To discover recurrent Copy Number Alterations (CNA)
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Overview

– RHMM modeling both groups 

separately

– This results in the identification 

of recurrent CNA genome wide

– Extract genes from Ensembl 

database

– Pathway enrichment
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Results: sporadic genome

Amplification on chromosome 3

Deletion on chromosome 16

Leunen, Gevaert et al. Submitted~ 475 Mb aberrated or 15%
(384 Mb gained and 91 Mb lost)
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Results: BRCA1 genome

Leunen, Gevaert et al. Submitted~ 730 Mb aberrated or 22%
(257 Mb gained and 473 Mb lost)
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Length of copy number losses

Results

Leunen, Gevaert et al. Submitted
Length of copy number gains
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Results per chromosome
GAINS LOSSES

Number

Length
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Results

Signature

Gene set name 

from MSigDB

P-

value

Q-

value Overlapping Genes

GAINED HOX GENES 0.00020 0.08684 HOXD10 HHEX HOXD11 HOXD9 HOXD13 HOXD1 HOXD12 HOXD4 

HOXD3

GAINED MATRIX 

METALLOPROTEINASES

0.00020 0.08684 MMP3 MMP10 MMP13 MMP27 MMP1 MMP20 MMP7 MMP8 MMP12

LOST BREAST CANCER 

ESTROGEN SIGNALING

0.00180 0.09824 SPRR1B CLDN7 TP53 GATA3 ERBB2 CCND1 SCGB1D2 THBS2 C3 

KLK5 FOSL1 KRT18 DLC1 KRT19 CTSB IL6ST RPL27 FLRT1 NGFR 

SERPINE1 IL2RA SCGB2A2 BCL2 HMGB1 SCGB2A1 TNFAIP2 

AZGP1 ESR1 EGFR ESR2 RPL13A S100A2 SERPINB5 THBS4 BAD 

COL6A1 ACTB

LOST TUMOR SUPRESSOR 0.00200 0.09824 BRCA2 CDKN2D BRCA1 LCMT2 EP300 TSC2 CDKN1C CFL1 TP53 

RB1 NF2 CREBBP ACTB

LOST HOX GENES 0.00223 0.09852 HOXA6 CBX8 LHX2 HOXB5 HOXB13 HOXA5 EZH1 HOXA2 HOXA4 

PHC2 HOXA11 HOXA1 CBX4 HOXB3 HOXA3 DLX4 HOXA10 

HOXB2 HOXB7 HOXA7 HOXB1 HOXB9 HOXA9 HOXB6

Leunen, Gevaert et al. SubmittedPathways enriched in the BRCA1 group
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Conclusion

• Complex but powerful modeling strategies allows to identify 

recurrent CNAs 

• CNAs from the two groups of patients are different

• Different pathways enriched

• We hypothesize that BRCA1-mutated tumors are driven by 

different biological processes and may benefit from different 

therapy strategies.
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Aim 2: Integration of primary 

data sources
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Data

• Case 1: Integration of clinical and microarray data

– van „t Veer data set

• Case 2: Integration of microarray and proteomics data

– Rectal cancer data set (University Hospitals Leuven)
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• Breast cancer microarray data van 't Veer et al. Nature 2002

• Microarray data consisted of ~20000 genes

• Clinical data consists of 7 variables: 

– age, diameter, grade, angioinvasion, ERP, PRP, lymphocytic 

infiltration

• Binary outcome variable had two states: 

– good prognosis (disease free interval of at least 5 years) 

– poor prognosis (recurrence within 5 years)

Case 1: van’t Veer
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• We have defined different methods for integrating both 
data sources with Bayesian networks
– Full integration

– Decision integration

– Partial integration

• The difference between these methods lies “when” the 
data integration takes place

Data integration
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Prognosis predictionMicroarray data Clinical data 

gene clinical variable

patient

PrognosisOne dataset

Learning Bayesian network

K2

Full integration
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Microarray data Clinical data 

Prognosis prediction Prognosis predictionw1  x w2   x+

Trained weightLearning BN

K2

Learning BN 

K2

Decision integration
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Microarray data Clinical data Prognosis prediction

Partial integration
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Met hod AUC St d

Clinical dat a 0.751 0.086
Microarray dat a 0.750 0.073
Decision int egrat ion 0.773 0.071

Part ial int egrat ion 0.793 0.068
Full int egrat ion 0.747 0.099

Part ial int egrat ion is signif icant ly dif ferent   

from  all ot her except  decision int egrat ion 
(w ilcoxon rank sum  t est )

• Partial integration 

performs best

• Full integration is not 

better than either data 

source separately

Results

Gevaert et al. Bioinformatics 2006
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Partial integration
Gevaert et al. Bioinformatics 2006
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• 3 clinical variables

• 13 genes

grade

age

angioinvasion

Prognosis

HRASLS
DLX2

MMP9 AA703254

PDIA4

KIAA1181

MS4A7

LGP2

NIPA1

RAB27B

FBXO16
TSPYL5 SERF1A

Results

Gevaert et al. Bioinformatics 2006
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Case 2: rectal cancer

• Rectal cancer therapy timeline:

– T0: start of therapy

– T1: after 1 loading dose of cetuximab

– T2: before surgery

• Outcome: Wheeler regression grade

Microarray data

Proteomics data
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Overview

• Partial integration -> 

Bayesian integration

– Step 1: represent each data 

source with its posterior 

distribution

– Step 2: integrate posterior in 

a structure prior

– Step 3: learn integrated 

network

– Step 4: estimate predictive 

performance
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Results
Model 

abbreviation

AUC SE

ALL 0.73 0.08

MPT0 0.23 0.09

MPT1 0.67 0.1

MT0T1 0.54 0.11

PT0T1 0.55 0.12

MT0 0.41 0.1

MT1 0.55 0.11

PT0 0.49 0.11

PT1 0.57 0.1

Partial integration 0.61 0.11

Full integration 0.51 0.1

Naïve Bayes 0.41 0.1

LS-SVM small 0.39 0.1

LS-SVM large 0.45 0.1
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Results ROC curve
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Results

• Thickness of the edge 

reflects its confidence

• A, B, C, D and E are 

links with strong support 

in literature
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Conclusions

• We have developed a Bayesian network integration framework

• The breast cancer and rectal cancer case show that integrating 

information improves predictive performance. 

• Additionally, new biological hypothesis are generated



8 December 2008Olivier Gevaert

Aim 3: Integration of 

secondary data sources
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• Recently there has been a significant increase of publicly 

available databases containing secondary data:

– E.g Reactome, Transfac, IntAct, Biocarta, KEGG

• However still many knowledge is contained in publications in 

unstructured form 

• … and not deposited in public databases where it can be easily 

used by algorithms

• Therefore we investigated if literature abstracts in the structure 

prior of a Bayesian network improved prognosis prediction

Motivation
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Structure prior

Structure priorParameter prior

• Bayesian model building allows integration of prior 

information: 

– Structure prior

– Parameter prior (not used  uninformative prior)

Heckerman, Machine Learning, Vol. 20 (1995), pp. 197-243. 
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Integration of secondary data
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Structure prior construction

g1

gn

genes

Text mining
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Structure prior construction
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Structure prior construction
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Structure prior construction
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Structure prior construction
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Structure prior construction

      each abstract

Normalization + averaging

Iterate for all genes
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Structure prior: scaling

• Scaling

– A fully connected Bayesian network can explain any data set 

but we want simple models

– The prior contains many gene-gene similarities however we 

will not use them directly

• We will introduce an extra parameter: mean density

• Structure prior will be scaled according to this mean density

• Low mean density  less edges  less complex 

networks
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Summary

Scaling
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Results

Mean 

density

Text prior

mean AUC

Uniform prior 

mean AUC

P-value

1 0.80 (0.08) 0.75(0.08) 0.000396§

2 0.80 (0.08) 0.75(0.07) <2e-06§

3 0.79 (0.08) 0.75(0.08) 0.00577§

4 0.79 (0.07) 0.74(0.08) <6e-06§

• First case: Breast cancer (van‟t Veer data)

Average number of parents 

per variable

Gevaert et al. PSB 2008

Gevaert et al. Ann NY Acad Sci 2007
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Results

• Second Case: Bild data (3 data sets)

– Breast

– Ovarian 

– Lung

• Mean density is set to 1 based on van‟t Veer results 

Data set Text prior

mean AUC

Uniform prior 

mean AUC

P-value

Breast 0.79 0.75 0.00020

Ovarian 0.69 0.63 0.00002

Lung 0.76 0.74 0.02540

Gevaert et al. PSB 2008

Gevaert et al. Ann NY Acad Sci 2007
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Conclusions

• The text prior improves outcome prediction of cancer compared 

to not using a prior

• Both on the initial data set and the validation data sets

• Also allows to select a set of genes based on both gene expression 

data and knowledge available in the literature related to cancer 

outcome
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Overall conclusions

• Our main goal was to develop a Bayesian network integration 
framework to model primary and secondary data

• First, we illustrated Bayesian network model on two primary data 
sources: 

– Clinical data 

– Genomic data

• Secondly, we illustrated the integration of primary data sources on 
two cases
– Integrating clinical and microarray data of breast cancer patients

– Integrating microarray and proteomics data of rectal cancer patients

• Thirdly, we integrated secondary data in the form of literature 
abstracts
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Overall conclusions
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Future work

• We see two important future directions

– Integration of other secondary data sources: 

• Protein-DNA interactions (TRANSFAC), Pathway information 

(KEGG, Biocarta), …

• Main issue is standardization of databases: being solved thanks 

to efforts such as BIOPAX

– New technologies

• Exon microarrays, SNP microarrays, second generation 

sequencing will probably unlock a whealth of information

• Amount of data will increase super exponentially which may 

cause serious computational problems

• Possible solution is parallellization: HPC cluster K.U.Leuven 

– Calculation time on VIC cluster used during PhD amounts to 1.4 

years of CPU time 
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